22 research outputs found

    RxGen General Optical Model Prescription Generator

    Get PDF
    RxGen is a prescription generator for JPL's in-house optical modeling software package called MACOS (Modeling and Analysis for Controlled Optical Systems), which is an expert optical analysis software package focusing on modeling optics on dynamic structures, deformable optics, and controlled optics. The objectives of RxGen are to simplify and automate MACOS prescription generations, reducing errors associated with creating such optical prescriptions, and improving user efficiency without requiring MACOS proficiency. RxGen uses MATLAB (a high-level language and interactive environment developed by MathWorks) as the development and deployment platform, but RxGen can easily be ported to another optical modeling/analysis platform. Running RxGen within the modeling environment has the huge benefit that variations in optical models can be made an integral part of the modeling state. For instance, optical prescription parameters determined as external functional dependencies, optical variations by controlling the in-/exclusion of optical components like sub-systems, and/or controlling the state of all components. Combining the mentioned capabilities and flexibilities with RxGen's optical abstraction layer completely eliminates the hindering aspects for requiring proficiency in writing/editing MACOS prescriptions, allowing users to focus on the modeling aspects of optical systems, i.e., increasing productivity and efficiency. RxGen provides significant enhancements to MACOS and delivers a framework for fast prototyping as well as for developing very complex controlled optical systems

    General MACOS Interface for Modeling and Analysis for Controlled Optical Systems

    Get PDF
    The General MACOS Interface (GMI) for Modeling and Analysis for Controlled Optical Systems (MACOS) enables the use of MATLAB as a front-end for JPL s critical optical modeling package, MACOS. MACOS is JPL s in-house optical modeling software, which has proven to be a superb tool for advanced systems engineering of optical systems. GMI, coupled with MACOS, allows for seamless interfacing with modeling tools from other disciplines to make possible integration of dynamics, structures, and thermal models with the addition of control systems for deformable optics and other actuated optics. This software package is designed as a tool for analysts to quickly and easily use MACOS without needing to be an expert at programming MACOS. The strength of MACOS is its ability to interface with various modeling/development platforms, allowing evaluation of system performance with thermal, mechanical, and optical modeling parameter variations. GMI provides an improved means for accessing selected key MACOS functionalities. The main objective of GMI is to marry the vast mathematical and graphical capabilities of MATLAB with the powerful optical analysis engine of MACOS, thereby providing a useful tool to anyone who can program in MATLAB. GMI also improves modeling efficiency by eliminating the need to write an interface function for each task/project, reducing error sources, speeding up user/modeling tasks, and making MACOS well suited for fast prototyping

    On-Orbit Multi-Field Wavefront Control with a Kalman Filter

    Get PDF
    A document describes a multi-field wavefront control (WFC) procedure for the James Webb Space Telescope (JWST) on-orbit optical telescope element (OTE) fine-phasing using wavefront measurements at the NIRCam pupil. The control is applied to JWST primary mirror (PM) segments and secondary mirror (SM) simultaneously with a carefully selected ordering. Through computer simulations, the multi-field WFC procedure shows that it can reduce the initial system wavefront error (WFE), as caused by random initial system misalignments within the JWST fine-phasing error budget, from a few dozen micrometers to below 50 nm across the entire NIRCam Field of View, and the WFC procedure is also computationally stable as the Monte-Carlo simulations indicate. With the incorporation of a Kalman Filter (KF) as an optical state estimator into the WFC process, the robustness of the JWST OTE alignment process can be further improved. In the presence of some large optical misalignments, the Kalman state estimator can provide a reasonable estimate of the optical state, especially for those degrees of freedom that have a significant impact on the system WFE. The state estimate allows for a few corrections to the optical state to push the system towards its nominal state, and the result is that a large part of the WFE can be eliminated in this step. When the multi-field WFC procedure is applied after Kalman state estimate and correction, the stability of fine-phasing control is much more certain. Kalman Filter has been successfully applied to diverse applications as a robust and optimal state estimator. In the context of space-based optical system alignment based on wavefront measurements, a KF state estimator can combine all available wavefront measurements, past and present, as well as measurement and actuation error statistics to generate a Maximum-Likelihood optimal state estimator. The strength and flexibility of the KF algorithm make it attractive for use in real-time optical system alignment when WFC alone cannot effectively align the system

    MACOS Version 3.31

    Get PDF
    Version 3.31 of Modeling and Analysis for Controlled Optical Systems (MACOS) has been released. MACOS is an easy-to-use computer program for modeling and analyzing the behaviors of a variety of optical systems, including systems that have large, segmented apertures and are aligned with the technology of wavefront sensing and control. Two previous versions were described in "Improved Software for Modeling Controlled Optical Systems" (NPO-19841) NASA Tech Briefs, Vol. 21, No. 12 (December 1997), page 42 and "Optics Program Modified for Multithreaded Parallel Computing" (NPO-40572) NASA Tech Briefs, Vol. 30, No. 1 (January 2006) page 13a. The present version incorporates the following enhancements over prior versions: a) A powerful system-optimization facility includes algorithms for linear, nonlinear, unconstrained, and constrained optimization of optical systems under a variety of settings. b) There is now enhanced capability to perturb optical components individually and on subsystem levels, and to optimize system performance by adjusting selected individual components as well as subsystems. c) Capabilities for modeling a variety of new optical aperture types have been added. d) Effects of multilayer thin-film coats on optical surfaces can now be taken into account when tracing polarized rays. e) Major software-engineering work was performed to make MACOS more reliable, flexible, and manageable for purposes of maintenance and further development

    Analysis of normalized point source sensitivity as a performance metric for large telescopes

    Get PDF
    We investigate a new metric, the normalized point source sensitivity (PSSN), for characterizing the seeing-limited performance of large telescopes. As the PSSN metric is directly related to the photometric error of background limited observations, it represents the efficiency loss in telescope observing time. The PSSN metric properly accounts for the optical consequences of wave front spatial frequency distributions due to different error sources, which differentiates from traditional metrics such as the 80% encircled energy diameter and the central intensity ratio. We analytically show that multiplication of individual PSSN values due to individual errors is a good approximation for the total PSSN when various errors are considered simultaneously. We also numerically confirm this feature for Zernike aberrations as well as for the numerous error sources considered in the error budget of the Thirty Meter Telescope (TMT) using a ray optics simulator. Additionally, we discuss other pertinent features of the PSSN, including its relations to Zernike aberration, RMS wave front error, and central intensity ratio

    High-resolution optical modeling of the Thirty Meter Telescope for systematic performance trades

    Get PDF
    We consider high-resolution optical modeling of the Thirty Meter Telescope for the purpose of error budget and instrumentation trades utilizing the Modeling and Analysis for Controlled Optical Systems tool. Using this ray-trace and diffraction model we have simulated the TMT optical errors related to multiple effects including segment alignment and phasing, segment surface figures, temperature, and gravity. We have then modeled the effects of each TMT optical error in terms of the Point Source Sensitivity (a multiplicative image plane metric) for a seeing limited case and an adaptive optics corrected case (for the NFIRAOS). This modeling provides the information necessary to rapidly conduct design trades with respect to the planned telescope instrumentation and to optimize the telescope error budget

    Dispersed Fringe Sensing Analysis - DFSA

    Get PDF
    Dispersed Fringe Sensing (DFS) is a technique for measuring and phasing segmented telescope mirrors using a dispersed broadband light image. DFS is capable of breaking the monochromatic light ambiguity, measuring absolute piston errors between segments of large segmented primary mirrors to tens of nanometers accuracy over a range of 100 micrometers or more. The DFSA software tool analyzes DFS images to extract DFS encoded segment piston errors, which can be used to measure piston distances between primary mirror segments of ground and space telescopes. This information is necessary to control mirror segments to establish a smooth, continuous primary figure needed to achieve high optical quality. The DFSA tool is versatile, allowing precise piston measurements from a variety of different optical configurations. DFSA technology may be used for measuring wavefront pistons from sub-apertures defined by adjacent segments (such as Keck Telescope), or from separated sub-apertures used for testing large optical systems (such as sub-aperture wavefront testing for large primary mirrors using auto-collimating flats). An experimental demonstration of the coarse-phasing technology with verification of DFSA was performed at the Keck Telescope. DFSA includes image processing, wavelength and source spectral calibration, fringe extraction line determination, dispersed fringe analysis, and wavefront piston sign determination. The code is robust against internal optical system aberrations and against spectral variations of the source. In addition to the DFSA tool, the software package contains a simple but sophisticated MATLAB model to generate dispersed fringe images of optical system configurations in order to quickly estimate the coarse phasing performance given the optical and operational design requirements. Combining MATLAB (a high-level language and interactive environment developed by MathWorks), MACOS (JPL s software package for Modeling and Analysis for Controlled Optical Systems), and DFSA provides a unique optical development, modeling and analysis package to study current and future approaches to coarse phasing controlled segmented optical systems

    Analysis of Normalized Point Source Sensitivity as a performance metric for the Thirty Meter Telescope

    Get PDF
    We investigate a new metric, Normalized Point Source Sensitivity (PSSN), for characterizing the seeing limited performance of the Thirty Meter Telescope. As the PSSN metric is directly related to the photometric error of background limited observations, it truly represents the efficiency loss in telescope observing time. The PSSN metric properly accounts for the optical consequences of wavefront spatial frequency distributions due to different error sources, which makes it superior to traditional metrics such as the 80% encircled energy diameter. We analytically show that multiplication of individual PSSN values due to individual errors is a good approximation for the total PSSN when various errors are considered simultaneously. We also numerically confirm this feature for Zernike aberrations, as well as for the numerous error sources considered in the TMT error budget using a ray optics simulator, Modeling and Analysis for Controlled Optical Systems. We also discuss other pertinent features of the PSSN including its relations to Zernike aberration and RMS wavefront error

    Investigation of Thirty Meter Telescope wavefront maintenance using low-order Shack-Hartmann wavefront sensors to correct for thermally-induced misalignments

    Get PDF
    We evaluate how well the performance of the Thirty Meter Telescope (TMT) can be maintained against thermally induced errors during a night of observation. We first demonstrate that using look-up-table style correction for TMT thermal errors is unlikely to meet the required optical performance specifications. Therefore, we primarily investigate the use of a Shack-Hartmann Wavefront Sensor (SH WFS) to sense and correct the low spatial frequency errors induced by the dynamic thermal environment. Given a basic SH WFS design, we position single or multiple sensors within the telescope field of view and assess telescope performance using the JPL optical ray tracing tool MACOS for wavefront simulation. Performance for each error source, wavefront sensing configuration, and control scheme is evaluated using wavefront error, plate scale, pupil motion, pointing error, and the Point Source Sensitivity (PSSN) as metrics. This study provides insight into optimizing the active optics control methodology for TMT in conjunction with the Alignment and Phasing System (APS) and primary mirror control system (M1CS)

    High-resolution optical modeling of the Thirty Meter Telescope for systematic performance trades

    Get PDF
    We consider high-resolution optical modeling of the Thirty Meter Telescope for the purpose of error budget and instrumentation trades utilizing the Modeling and Analysis for Controlled Optical Systems tool. Using this ray-trace and diffraction model we have simulated the TMT optical errors related to multiple effects including segment alignment and phasing, segment surface figures, temperature, and gravity. We have then modeled the effects of each TMT optical error in terms of the Point Source Sensitivity (a multiplicative image plane metric) for a seeing limited case and an adaptive optics corrected case (for the NFIRAOS). This modeling provides the information necessary to rapidly conduct design trades with respect to the planned telescope instrumentation and to optimize the telescope error budget
    corecore